如何将纯循环小数化为分数?
1、纯循环小数化为分数方法:将纯循环小数改写为分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同,最后能约分的再约分。2、混循环小数化为分数方法:将混循环小数改写为分数,分子就是循环节中小数部分的数字组成的数减去小数部分中不循环部分数字组成的数而得到的差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。扩展资料应用:13.12323…=13+(123-1)/990=6496/4950.123123…=123/9990.12333…=(123-12)/900=111/900=37/300把上面的结论特点统一一下就是:如果循环节加上不循环的数位总共有多少位,那么分母就是多少位的9+0,9的个数等同循环节位数,0的个数等同不循环的位数;分子等于=小数点后不循环的数字加第一个循环节构成的数字,再减去小数点后不循环的数字。
如何化分数为循环小数?
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。箭头所指是说明:循环节有一位写一个9,不循环部分有一位写一个0。箭头所指说明:循环节有两位写两个9,不循环部分有一位写一个0。箭头所指说明:循环节有两位写两个9,不循环部分有两位写两个0。这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。 推导结果与例(3)的中间脱式一致。由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
如何将循环小数转化为分数?
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。箭头所指是说明:循环节有一位写一个9,不循环部分有一位写一个0。箭头所指说明:循环节有两位写两个9,不循环部分有一位写一个0。箭头所指说明:循环节有两位写两个9,不循环部分有两位写两个0。这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。 推导结果与例(3)的中间脱式一致。由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
循环小数如何变成分数?
1、纯循环小数化为分数方法:将纯循环小数改写为分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同,最后能约分的再约分。2、混循环小数化为分数方法:将混循环小数改写为分数,分子就是循环节中小数部分的数字组成的数减去小数部分中不循环部分数字组成的数而得到的差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。扩展资料应用:13.12323…=13+(123-1)/990=6496/4950.123123…=123/9990.12333…=(123-12)/900=111/900=37/300把上面的结论特点统一一下就是:如果循环节加上不循环的数位总共有多少位,那么分母就是多少位的9+0,9的个数等同循环节位数,0的个数等同不循环的位数;分子等于=小数点后不循环的数字加第一个循环节构成的数字,再减去小数点后不循环的数字。
循环小数如何化成分数
循环小数化分数的公式:ab(ab循环)=(ab/99)。纯循环小数化成分数的法则是:下一个循环节作为分子,连写几个9作为分母,9的个数等于一个循环节的位数。循环小数化成分数的法则是:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。分母的头几位数是9,末几位是0。9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。循环小数的分类:1、纯循环小数:自小数点后的十分位开始循环,比如:0.3333333……就是纯循环小数。2、混循环小数:自小数点后十分位不开始循环,后面才开始循环,比如:0.322222222222……就是混循环小数。