已知三角形abc的三边长分别为abc
解:∵ 3(a²+b²+c²)=(a+b+c)² ,
∴ 3a²+3b²+3c²=a²+b²+c²+2ab+2bc+2ac,
∴ 2a²+2b²+2c²-2ab-2bc-2ac=0 ,
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0 ,
∴ (a-b)²+(b-c)²+(c-a)²=0 ,
∴ (a-b)²=0 ,(b-c)²=0 ,(c-a)²=0 ,
∴ a=b ,b=c ,c=a ,
∴ a=b=c ;
∴ △ABC是等边三角形求采纳为满意回答。
已知三角形abc的三边长为a,b,c,若c
c(斜边)=√(a²+b²)(a,b为两直角边)。解答过程如下:(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a²+b²=c²。(2)a²+b²=c²求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a²+b²)。直角三角形的判定判定1:有一个角为90°的三角形是直角三角形。判定2:若a²+b²=c²的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互余的三角形是直角三角形。判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。定理:斜边和一条直角对应相等的两个直角三角形全等。判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。