什么叫有限单元法
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分 方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形 网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域 内选取N个配置点 。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。
对于有限元方法,其基本思路和解题步骤可归纳为
(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条 件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将 近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点 的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进 行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件, 一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭 方程组,采用适当的数值计算方法求解,可求得各节点的函数值。
希望帮到你!
有限单元法主要学什么
1、有限单元法主要讲述线弹性有限元法的基本理论、matlab编程实现及相应商业有限元软件的应用,对线弹性动力有限元法及材料、几何和接触三类非线性有限元法的基本概念和程序应用也进行了介绍。
2、主要内容是:matlab编程及符号运算、分部积分、泛函极值与变分法、直接刚度法、有限元求解方法、杆单元力学基础、单元组装、弹性固体结构、板壳结构。
3、综上可以看出,要想学好有限单元法,必须有一定的数学基础知识和软件编程的能力。
有限元方法的基本原理是什么?
有限元方法的基本原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表示。从而使一个连续的无限自由度问题变成离散的有限自由度问题。将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。扩展资料:有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限元法属于什么方法
您好,很高兴为您解答!有限元法属于什么方法是有限元法(finite element method)是一种高效能、常用的数值计算方法。【摘要】
有限元法属于什么方法【提问】
您好,很高兴为您解答!有限元法属于什么方法是有限元法(finite element method)是一种高效能、常用的数值计算方法。【回答】
有限元法是数值分析法中的一种,是一套求wei分方程的系统化数值计算方法,是解决力学问题比较有效的数值计算方法,是将数值计算转换为矩阵计算,有利于计算机运算。数值分析法就是构造一个比较简单的函数关系,来求解方程的近似值。【回答】
属于那个方法【提问】
不是让你简答,是选择题【提问】
亲您没给我选项呀【回答】
A弹性B集总参数法C边界元法【提问】
c【回答】
亲还可以提问吗?【提问】
亲可以的哦 您可以购买一个比较划算的套餐【回答】
自由式平台()的扛风浪倾覆能力就是整体抗倾稳性【提问】
需要挂号里答案【提问】
建议您来一个无限轮7天套餐更划算【回答】