幂函数的定义域是什么?
幂函数的定义域是:当a为负数时,定义域为(-∞,0)和(0,+∞)。当a为零时,定义域为(-∞,0)和(0,+∞);当a为正数时,定义域为(-∞,+∞)。幂函数的定义域:形如y=x^a(a为常数)的函数,称为幂函数。如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。正值性质:当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。负值性质:当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1)。b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
幂函数的定义域与值域是什么?
幂函数的定义域与值域是当m,n都为奇数,k为偶数时,概念域、值域均为R。当m,n都为奇数,k为奇数时,概念域、值域均为{x∈R|x≠0}。幂函数的一般形式是y=x^α,其中,a可为任何常数,但中学时期仅研究a为有理数的情形a为无理数时,概念域为(0,+∞)。幂函数的定义域与值域是当m,n都为奇数,k为偶数时,概念域、值域均为R,为奇函数。当m,n都为奇数,k为奇数时,概念域、值域均为{x∈R|x≠0},也便是(-∞,0)∪(0,+∞),为奇函数。当m为奇数,n为偶数,k为偶数时,概念域、值域均为[0,+∞),为非奇非偶函数。当m为奇数,n为偶数,k为奇数时,概念域、值域均为(0,+∞),为非奇非偶函数。当m为偶数,n为奇数,k为偶数时,概念域为R、值域为[0,+∞),为偶函数。当m为偶数,n为奇数,k为奇数时,概念域为{x∈R|x≠0},也便是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。