高数重要极限公式有哪些?
高数没有八个重要极限公式,只有两个。1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1;特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。相关性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
高数极限定义如何理解啊
无限接近是描述一个总的趋势的,不能说当n越大就越近A,有时Xn比Xn+1可能会更接近于A。但是总的趋势是随着n的增大越来越接近于极限值的。
其实无限接近可以理解成我想让它有多接近就有多接近(但是不一定会等于极限值)。你任意给一个再小的距离(大于0的),我都可以让数列中某项的值离极限A的距离比你给的距离更小。可见无限接近有这样一层意思,可以“任意接近”的意思。
既然总的趋势越来越接近,我给的距离哪怕再小,我总是可以找到某一项,使其后面所有的项离极限值A的距离比任意取的距离值更小。
高数中第二个重要极限的公式是什么?
第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。第二个要看场合,在整体乘除运算时等价无穷大可以替代,加减运算不能替代。在幂指函数求极限中不能代替,因为取对数时除法变减法,乘法变加法。扩展资料:设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥ε,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。参考资料来源:百度百科-极限
高数极限公式是什么?
1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。其他公式:1、椭圆周长(L)的精确计算要用到积分或无穷级数的求和,最早由伯努利提出,欧拉发展,对这类问题的讨论引出一门数学分支椭圆积分L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分,其中a为椭圆长轴,e为离心率。2、定积分的近似计算,定积分应用相关公式,空间解析几何和向量代数,多元函数微分法及应用,微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法,重积分及其应用,柱面坐标和球面坐标,曲线积分,曲面积分,高斯公式,斯托克斯公式是曲线积分与曲面积分的关系。3、设{xn}为一源个无穷实数数列2113的集合。如果存在5261实数a,对于任意正4102数ε,都N>0,唯一性若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。有界性:如果一个数列收敛有极限),那么这个数列一定有界。