哥德巴赫猜想是什么
哥德巴赫猜想是什么?也许人们常常从媒体上看到这个哥德巴赫猜想,可是还是不明白是什么东西,下面是这方面内容的介绍。 01 哥德巴赫1742年给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和 。但是哥德巴赫他自己无法证明,于是就写信请教大数学家欧拉帮忙证明,但是至死欧拉都无法证明。 02 现在常见的猜想几乎都是欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 03 1953年,林尼克发表了一篇论文。在文中,他率先研究了几乎哥德巴赫问题,证明了存在一个固定的非负整数k,使得任何大偶数都能写成两个素数与k个2的方幂之和。 04 华罗庚是中国最早研究哥德巴赫猜想的数学家。1936~1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。 05 1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;1966年,陈景润证明了“1+2”。 特别提示 这个猜想被誉为是数学界王冠上的明珠,谁能够证明这个猜想,几乎可以称为是数学界之王,大数学家欧拉研究了一辈子都证明不了。可以看出这个猜想的难度。
哥德巴赫猜想是什么?
哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。 这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”)。意义民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,然而初等数学无法解决哥德巴赫猜想。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。扩展资料背景1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。参考资料来源:百度百科-哥德巴赫猜想
哥德巴赫是谁
哥德巴赫 德国一俄国数学家。1690年3月兜旧生于普鲁士的柯尼斯堡(现为苏联的加里宁格勒);1764年11月20日卒于莫斯科。 哥德巴赫是一位牧师的儿子,在柯尼斯堡大学学习医学和数学。1710年他周游欧洲(这是有条件的人常常采取的一种增长阅历的方式)。1725年他定居俄国,成为圣彼得堡帝国科学院的数学教授; 1728年担任了早逝的彼得二世(彼得大帝的孙子)的宫廷教师。 哥德巴赫之所以在数学上负有盛名,是由于他在1742年给欧拉的一封信中提到所谓“哥德巴赫猜想”。(哥德巴赫与当时的数学家常有书信往来) 这个猜想是“任何一个大于2的偶数均可表示为两个素数之和。”例如4=2+2;6=3+3;8=3十5;10=3+7:12=5+7;等等。数学家们已经对大到10.000甚至更大的一些偶数进行实际验证,发现这个猜想是正确的;并且没有人指望发现例外。可是问题在于两个多世纪以来没有一位数学家能够证明这个猜想。这样简单的、显然正确的事实,为什么不能证明呢?这是数学家们所受到的挫折之一. 亲 给个满意采纳和赞吧 谢谢了 吖 ****** ****** ********** ********** ************* ************* ***************************** ***************************** ***************************** *************************** *********************** ******************* *************** *********** ******* *** *