矩阵的行列式怎么求?
行列式的乘法公式其实是矩阵的乘法得来的,即|A||B| = |AB|;其中A.B为同阶方阵,若记A=(aij),B=(bij),则|A||B| = |(cij)|,cij = ai1b1j+ai2b2j+...+ainbnj。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或| A |。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。注意事项1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
如何计算矩阵的行列式
具体的计算方法如上图所示拓展资料:行列式行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。行列式的基本性质1、性质1:行列互换,行列式的值不变。2、性质2:交换行列式的两行(列),行列式的值变号。3、推论:若行列式中有两行(列)的对应元素相同,则此行列式的值为零。4、性质3:若行列式的某一行(列)各元素都有公因子k,则k可提到行列式外。5、推论1:数k乘行列式,等于用数k乘该行列式的某一行(列)。6、推论2:若行列式有两行(列)元素对应成比例,则该行列式的值为零。7、性质4:若行列式中某行(列)的每一个元素均为两数之和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行(列)的元素,其余各行(列)与原行列式相同。8、性质5:将行列式某行(列)的k倍加到另一行(列)上,行列式的值不变。
行列式与矩阵的区别
矩阵与行列式的区别有四点,下面就是具体介绍:1、本质上,矩阵是一个数表,行列式是一个数值,n阶的方阵。2、数字符号上,矩阵是用括号表示的,行列式是用双竖线表示的。3、结构上,矩阵的行数和列数可以不一样,行列式的行数与列数一致。4、运算上,一个数乘以行列式,只能乘以行列式的一行或者一列。一个数乘以矩阵,矩阵的每个元素都要乘上这个数。两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。行列式相等,就是值相等,行和列数目不必相等,数据也不必相等。矩阵相等,行和列数目必须相等,对应位置的数据也必须相等。行列式相加减,就是两个数值相加减,结果还是数值。矩阵相加减,对应位置的数据相加减。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
矩阵和行列式的区别是什么?
一、含义不同:矩阵是一个数表;行列式是一个n阶的方阵。二、表示不同:矩阵不能从整体上被看成一个数;行列式最终可以算出来变成一个数。三、定义不同:矩阵的行数和列数可以不同;行列式行数和列数必须相同。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。