求2011年山东高考理科数学选择题答案解析
◎ 2010年高考文科数学试题(广东B卷)
绝密★启用前 试卷类型:B 2010年普通高等学校招生全国统一考试(广东卷) 数学(文科) 本试
◎ 2010年高考理科数学试题(湖北卷)
绝密★启用前 试卷类型:B 2010年普通高等学校招生全国统一考试(湖北卷) 数 学(理工农医类
◎ 2010年高考数学(文科)试题(江西卷)
绝密★启用前 2010年普通高等学校招生全国统一考试(江西卷) 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分. 考生注意: 1.答题前
◎ 2010年高考文科学试卷(全国Ⅱ)
绝密★启用前 2010年普通高等学校招生全国统一考试 文科数学 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页。考试结束后,将本试卷和答题Ⅰ、Ⅱ交回,全
◎ 2010年高考数学(理科)试题(安徽卷)
绝密★启用前 2010年普通高等学校招生全国统一考试(安徽卷) 数 学(理科) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。全卷满分150分钟
◎ 2010年高考数学试题(江苏卷)及答案解析
2010年江苏高考数学试题及参考答案 填空题 设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________ 答案:1; 设复数z满足z(2-3
◎ 2010年高考江苏数学试题
2010年江苏高考数学试题 填空题 设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________ 设复数z满足z(2-3i)=6+4i(其中i为虚数
◎ 2010年高考数学(理)试题(四川卷)
2010年普通高等学校招生全国统一考试(四川卷) 数学(理工农医类) 第Ⅰ卷 选择题: (1) 是虚数单位,计算 (A)-1 (B)1 (C)
◎ 2010年高考数学理试题(全国卷1)
绝密★启用前 2010年普通高等学校招生全国统一考试 理科数学(必修+选修II) 本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。第I卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答
◎ 2010年高考四川文科数学试题
绝密★启用前 2010年普通高等学校招生全国统一考试(四川卷) 数学(文史类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至1 0 页.满分150分。考试时间12
◎ 2010年高考数学(文)试题(全国卷1)
绝密★启用前 2010年普通高等学校招生全国统一考试 文科数学(必修+选修II) 本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。第I卷1至2页。第Ⅱ卷3 至4页。考试结束后,将本试卷和答
◎ 2010年高考山东理科数学试卷
2010年普通高等学校招生全国统一考试(山东卷) 数学理本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后将本试卷和答题卡一并交回 注意事项: 答题前,考生务必用0.
◎ 2010年高考数学(理)试题(山东卷)答案解析
绝密★启用前 试卷类型:B 2010年普通高等学校招生全国统一考试(山东卷) 理科数学解析版 注
◎ 2010年高考文科数学试题(重庆卷)
2010年普通高等学校招生全国统一考试(重庆卷) 数学试题卷(文史类)数学试题卷(文史类)共5页。满分150分。考试时间120分钟。 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在
◎ 2010年高考文科数学试题(江西卷)
绝密★启用前 2010年普通高等学校招生全国统一考试(江西卷) 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分. 考生注意:ks5u 1
◎ 2010年高考理科数学试题(广东A卷)
绝密 ★ 启用前 2010年普通高等学校招生全国统一考试(广东A卷) 数学(理科) 选择题:本大题共8小题,每小题5分,满分40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若集合
◎ 2010年高考数学(理)试题(山东卷)
2010年普通高等学校招生全国统一考试(山东卷) 数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后将本试卷和答题卡一并交回 注意事项: 答题前,考生务必用0.5
◎ 2010年高考理科数学试题(全国卷Ⅱ)
2010年普通高等学校招生全国统一考试(全国卷Ⅱ) 数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷1至2页,第Ⅱ卷3至4页。考试结束后,将本试卷降答题卡一同交回,满分150分,考试用时1
◎ 2010年高考理科数学试题(湖北卷)
2010年普通高等学校招生全国统一考试(湖北卷) 数学(理工农医类) 选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个选项中,只有一项是满足题目要求的。1.若i为虚数单位,图中复平面
2010年全国高考理科数学试题山东卷
2010年普通高等学校招生全国统一考试(山东卷)
理科数学解析版
注意事项:
1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证
号条形码粘贴在答题卡上的指定位置,用2B铅笔将答题卡上试卷类型B后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区
域内。答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)
一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只
有一项是满足题目要求的.
(1) 已知全集U=R,集合M={x||x-1| 2},则
(A){x|-13} (D){x|x -1或x 3}
【答案】C
【解析】因为集合 ,全集 ,所以
【命题意图】本题考查集合的补集运算,属容易题.
(2) 已知 (a,b∈R),其中i为虚数单位,则a+b=
(A)-1 (B)1 (C)2 (D)3
【答案】B
【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.
【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。
(3)在空间,下列命题正确的是
(A)平行直线的平行投影重合
(B)平行于同一直线的两个平面平行
(C)垂直于同一平面的两个平面平行
(D)垂直于同一平面的两条直线平行
【答案】D
【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。
【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。
(4)设f(x)为定义在R上的奇函数,当x≥0时,f(x)= +2x+b(b为常数),则f(-1)=
(A) 3 (B) 1 (C)-1 (D)-3
【答案】D
(7)由曲线y= ,y= 围成的封闭图形面积为[来源:Www.ks5u.com]
(A) (B) (C) (D)
【答案】A
【解析】由题意得:所求封闭图形的面积为 ,故选A。
【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。
(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
(A)36种 (B)42种 (C)48种 (D)54种
【答案】B
可知当直线 平移到点(5,3)时,目标函数 取得最大值3;当直线 平移到点(3,5)时,目标函数 取得最小值-11,故选A。
【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数 的几何意义是解答好本题的关键。
(11)函数y=2x - 的图像大致是
【答案】A
【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。
【命题意图】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力。
(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令
,下面说法错误的是( )
A.若 与 共线,则 B.
C.对任意的 ,有 D.
【答案】B
【解析】若 与 共线,则有 ,故A正确;因为 ,而
,所以有 ,故选项B错误,故选B。
【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。
二、填空题:本大题共4小题,每小题4分,共16分.
(13)执行右图所示的程序框图,若输入 ,则输出 的值为 .
【答案】
【解析】当x=10时,y= ,此时|y-x|=6;
当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;
当x= 时,y= ,此时|y-x|= ,故输出y的值为 。
【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力。
【答案】
【解析】由题意,设所求的直线方程为 ,设圆心坐标为 ,则由题意知:
,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。
【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。
(18)(本小题满分12分)
已知等差数列 满足: , , 的前n项和为 .
(Ⅰ)求 及 ;
(Ⅱ)令bn= (n N*),求数列 的前n项和 .
【解析】(Ⅰ)设等差数列 的公差为d,因为 , ,所以有
,解得 ,
所以 ; = = 。
(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,
所以 = = ,
即数列 的前n项和 = 。
【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。
(19)(本小题满分12分)
如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P—ACDE的体积.
【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,
所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,
又PA ,所以 ,又AB‖CD,所以 ,又因为
,所以平面PCD⊥平面PAC;
(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则
,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;
(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。