双线性插值

时间:2024-11-23 15:53:27编辑:阿奇

什么是线性插值原理 什么是双线性插值?

线性插值一次为:0,5,10,15,20,25,30,35,40即认为其变化(增减)是线形的,可以在坐标图上画出一条直线在数码相机技术中,这些数值可以代表组成一张照片的不同像素点的色彩、色度等指标。为了方便理解,先考虑一维情况下的线性插值对于一个数列c,我们假设c[a]到c[a+1]之间是线性变化的那么对于浮点数x(a<=x<a+1),c(x)=c[a+1]*(x-a)+c[a]*(1+a-x);把这种插值方式扩展到二维情况对于一个二维数组c,我们假设对于任意一个浮点数i,c(a,i)到c(a+1,i)之间是线性变化的,c(i,b)到c(i,b+1)之间也是线性变化的(a,b都是整数)那么对于浮点数的坐标(x,y)满足(a<=x<a+1,b<=y<b+1),我们可以先分别求出c(x,b)和c(x,b+1):c(x,b) = c[a+1]*(x-a)+c[a]*(1+a-x);c(x,b+1) = c[a+1][b+1]*(x-a)+c[a][b+1]*(1+a-x);好,现在已经知道c(x,b)和c(x,b+1)了,而根据假设c(x,b)到c(x,b+1)也是线性变化的,所以:c(x,y) = c(x,b+1)*(y-b)+c(x,b)*(1+b-y)这就是双线性插值,


什么是双线性插值法?

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。首先在 x 方向进行线性插值,然后在 y 方向进行线性插值。

与这种插值方法名称不同的是,这种插值方法并不是线性的,而是是两个线性函数的乘积。

线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。


上一篇:纲手

下一篇:没有了