阳离子交换作用
岩石颗粒的表面往往带负电荷,因此能吸附某些阳离子。当某种成分的地下水与岩石颗粒接触时,水中某些阳离子被岩石颗粒表面吸附,以代替原来被吸附的阳离子,而原来被吸附的阳离子则进入水中,改变了地下水的化学成分,这种作用称为阳离子交换吸附作用。阳离子交换的强度取决于很多因素,其中主要的是岩石的粒度、交换阳离子的性质、介质的pH值和水中电解质的浓度。1.粒度一般岩石的粒度越细,它的交换性能越强。因此,在黏土和黏土岩中,阳离子交换对水化学成分的影响明显。2.离子性质不同阳离子的吸附能不同,在其他条件相同的情况下,吸附能的大小取决于它们的离子价,离子价越高吸附能越强,并易留在岩石上。如果阳离子的电价相同,吸附能随原子量的增加而增大。部分离子吸附能强弱的顺序如下:H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>Na+由上可见,Ca2+的吸附能大于Na+,因此在自然界中常可见到地下水中的Ca2+交换吸附岩石颗粒表面的Na+。水文地球化学基础阳离子交换吸附作用在含水层中广泛地进行,并且对改变地下水的化学成分及地下水的性质有重大意义。这种作用使硬度大的地下水变为硬度小的软水,形成低矿化度的钠水,如SO4—Na型、HCO3—Na型以及一些其他过渡型水。3.pH值在阳离子交换反应中,氢离子有着特殊的作用。它的交换能量不仅高于一价的阳离子,还高于二价和三价的阳离子。介质的pH值影响阳离子的吸附数量,水中的氢离子越多,对其他阳离子进入胶状综合体的阻力越强。增加与土壤处于平衡状态的溶液pH值,土壤的交换性能增强。当介质的pH值由6增加到11时,交换容量增加1~2倍。4.电解质浓度离子交换吸附作用并不仅决定于离子的性质,在吸附交换过程中,水中电解质浓度也起着重要作用,浓度大的离子比浓度小的离子易被吸附。因此,如果钠的浓度相当大时,吸附综合体中的部分钙离子将被钠离子排挤出去,水中的Na+与岩石颗粒表面的Ca2+就发生交换吸附的现象,例如海水入侵过程中的Na+与Ca2+的交换吸附。水文地球化学基础天然水中的交换主要是阳离子交换,而不是阴离子交换。这是由于岩石和土壤的胶体成分主要是由SiO2、Al2O3和其他带负电的胶粒所组成,它们吸附带正电的阳离子。除阳离子吸附外,在某些情况下也能发生阴离子吸附作用(例如砖红壤),但是对这种过程研究很少。
离子交换原理
离子交换原理:离子交换是应用离子交换剂(最常见的是离子交换树脂)分离含电解质的液体混合物的过程。离子交换过程是液固两相间的传质(包括外扩散和内扩散)与化学反应(离子交换反应)过程,通常离子交换反应进行得很快,过程速率主要由传质速率决定。离子交换反应一般是可逆的,在一定条件下被交换的离子可以解吸(逆交换),使离子交换剂恢复到原来的状态,即离子交换剂通过交换和再生可反复使用。同时,离子交换反应是定量进行的。EDI的工作原理:EDI将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷;20世纪80年代以来逐渐兴起的新技术,经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
离子交换分离法包括哪几个过程
1、树脂的选择与处理;装柱过程;交换过程;洗脱过程。
2、离子交换分离法是利用交换剂与溶液中的离子发生交换进行分离的方法,是一种固液分离方法。广泛应用于水处理、医药、冶金、化工等领域。
3、离子交换分离法是利用交换剂与溶液中的离子发生交换进行分离的方法,是一种固液分离方法。天然的离子交换剂有粘土、沸石、淀粉、纤维素、蛋白质等,但实际应用中最主要的类别是离子交换树脂,离子交换膜等。离子交换树脂又分为酸性离子交换树脂、碱性离子交换树脂、中性离子交换树脂等。离子交换的过程,就是交换剂中的离子与溶液中的离子实现总量上的等电荷互换,从而实现分离溶液中目标离子的效果。详见离子交换树脂词条。