数学期望

时间:2024-12-18 04:03:33编辑:阿奇

期望值怎么算的?

投资生产A产品的期望为64万元,投资生产B产品的期望为41万元。解答过程为:1、先求A,B两种产品成功的概率:P(A)=40/50=0.8,P(B)=35/50=0.7。2、投资生产A产品的期望为E(A)=0.8*100+0.2*(-80)=64;投资生产B产品的期望为E(B)=0.7*80+0.3*(-50)=41。E(A)>E(B)所以投资A产品要好,因为A平均获利水平高于B。扩展资料:数学期望的性质:1、设X是随机变量,C是常数,则E(CX)=CE(X)。2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。4、设C为常数,则E(C)=C。期望的应用1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。

数学期望值怎么计算?

投资生产A产品的期望为64万元,投资生产B产品的期望为41万元。解答过程为:1、先求A,B两种产品成功的概率:P(A)=40/50=0.8,P(B)=35/50=0.7。2、投资生产A产品的期望为E(A)=0.8*100+0.2*(-80)=64;投资生产B产品的期望为E(B)=0.7*80+0.3*(-50)=41。E(A)>E(B)所以投资A产品要好,因为A平均获利水平高于B。扩展资料:数学期望的性质:1、设X是随机变量,C是常数,则E(CX)=CE(X)。2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。4、设C为常数,则E(C)=C。期望的应用1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。

数学期望的计算公式是什么?

数学期望的公式:(1)期望的“线性”性质。对于所有满足条件的离散型的随机变量X,Y和常量a,b,有:E(aX+bY)=aE(x)+bE(y)E(aX+bY)=aE(x)+bE(y);类似的,我们还有E(XY)=E(X)+E(Y)E(XY)=E(X)+E(Y)。(2)全概率公式 假设{Bn∣n=1,2,3,...Bn∣n=1,2,3,...}是一个“概率空间有限或可数无限”的分割,且集合BnBn是一个“可数集合”,则对于任意事件A有:P(A)=∑nP(A∣Bn)P(Bn)P(A)=∑nP(A∣Bn)P(Bn)(3)全期望公式 E(Y)=E(E(Y∣X))=∑iP(X=xi)E(Y∣X=xi)数学期望亦称期望、期望值等。在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和。拓展资料:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。参考资料:百度百科-数学期望

数学期望公式是什么?

数学期望公式是:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)X ;1,X ;2,X ;3,……,X。n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn).应用:1、经济决策假设超市销售某一商品,周需求x的取值范围为10-30,商品的采购量取值范围为10-30。超市每售出一件商品可获利500元。如果供过于求,就会降价,每加工一件商品就要亏损10元。0元;如果供过于求,可以从其他超市转手。此时,超市商品可获利300元。超市在计算进货量时,能得到最大的利润吗?得到最大利润的期望值。分析:由于商品的需求(销售量)x是一个随机变量,它在区间[10,30]上均匀分布,而商品的销售利润值y也是一个随机变量。它是x的函数,称为随机变量函数。问题涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,求解该问题的过程是确定y与x之间的函数关系,然后求出y的期望e(y),最后用极值法求出e(y)的最大点和最大值。2、竞争问题乒乓球是我们的国球,上个世纪的军事球也给中国带来了一些外交。中国在这项运动中具有绝对优势。本文提出了一个关于乒乓球比赛安排的问题:假设德国(德国选手波尔在中国也有很多球迷)和中国打乒乓球。有两种竞赛制度,一种是每方三名优胜者,另一种是每方五名优胜者,另一种是每方五名优胜者。哪一个对中国队更有利?

上一篇:李妍和

下一篇:没有了