递归函数的时间复杂度应该怎么算
求解算法的时间复杂度的具体步骤是:
⑴ 找出算法中的基本语句;
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常见的算法时间复杂度由小到大依次为:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
这只能基本的计算时间复杂度,具体的运行还会与硬件有关。
参考博客地址:
递归算法时间复杂度怎么分析
1、递归
是指对一个问题的求解,可以通过同一问题的更简单的形式的求解来表示. 并通过问题的简单形式的解求出复杂形式的解. 递归是解决一类问题的重要方法. 递归程序设计是程序设计中常用的一种方法,它可以解决所有有递归属性的问题,并且是行之有效的. 但对于递归程序运行的效率比较低,无论是时间还是空间都比非递归程序更费,若在程序中消除递归调用,则其运行时间可大为节省. 以下讨论递归的时间效率分析方法,以及与非递归设计的时间效率的比较.
2 时间复杂度的概念及其计算方法
算法是对特定问题求解步骤的一种描述. 对于算法的优劣有其评价准则,主要在于评价算法的时间效率,算法的时间通过该算法编写的程序在计算机中运行的时间来衡量,所花费的时间与算法的规模n有必然的联系,当问题的规模越来越大时,算法所需时间量的上升趋势就是要考虑的时间度量.
算法的时间度量是依据算法中最大语句频度(指算法中某条语句重复执行的次数)来估算的,它是问题规模n的某一个函数f(n). 算法时间度量记作:T(n)=O(f(n))
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的时间复杂度,简称时间复杂度[2].
例如下列程序段:
(1)x=x+1;(2)for(i=1;i<=n;i++) x=x+1;(3)for(j=1;j<=n;j++) for(k=1;k<=n;k++) x=x+1. 以上三个程序段中,语句x=x+1的频度分别为1,n,n2,则这三段程序的时间复杂度分别为O(1),O(n),O(n2).
求解过程为:先给出问题规模n的函数的表达式,然后给出其时间复杂度T(n).
但是在现实程序设计过程中,往往遇到的问题都是比较复杂的算法,就不能很容易地写出规模n的表达式,也比较难总结其时间复杂度. 递归函数就是属于这种情况. 下面举例说明递归函数的时间复杂度的分析方法.