期望值怎么算的?
投资生产A产品的期望为64万元,投资生产B产品的期望为41万元。解答过程为:1、先求A,B两种产品成功的概率:P(A)=40/50=0.8,P(B)=35/50=0.7。2、投资生产A产品的期望为E(A)=0.8*100+0.2*(-80)=64;投资生产B产品的期望为E(B)=0.7*80+0.3*(-50)=41。E(A)>E(B)所以投资A产品要好,因为A平均获利水平高于B。扩展资料:数学期望的性质:1、设X是随机变量,C是常数,则E(CX)=CE(X)。2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。4、设C为常数,则E(C)=C。期望的应用1、在统计学中,想要估算变量的期望值时,用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。2、在概率分布中,数学期望值和方差或标准差是一种分布的重要特征。
期望值指的是什么?
在概率论和统计学中,期望值是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)期望值特性期望值E是一个线形函数。X和Y为在同一机率空间的两个随机变量,a和b为任意实数。一般的说,一个随机变量的函数的期望值并不等于这个随机变量的期望值的函数。在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。特殊情况是当这两个随机变量是相互独立的时候(也就是说一个随机变量的输出不会影响另一个随机变量的输出)。