二分法matlab程序

时间:2025-01-25 05:31:26编辑:阿奇

matlab二分法代码

您好,亲😊我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码:function [root,iter] = bisection(f,a,b,tol,maxiter)% f: the function to be solved% a, b: the initial interval [a,b]% tol: the tolerance% maxiter: the maximum number of iterations allowed% Initializationiter = 0;fa = feval(f,a);% Check if the initial interval is validif sign(feval(f,b)) == sign(fa) error('f(a) and f(b) must have opposite signs')end% Loop until convergence or the maximum number of iterations is reachedwhile (b-a)/2 > tol && iter < maxiter % Compute the midpoint and evaluate the function at the midpoint c = (a + b)/2; fc = feval(f,c); % Update the interval [a,b] if fc == 0 % The root has been found root = c; return elseif sign(fc) == sign(fa) a = c; fa = fc; else b = c; end % Update the iteration counter iter = iter + 1;end% Output the root and the number of iterationsroot = (a + b)/2;end【摘要】matlab二分法代码【提问】【提问】【提问】您好,亲😊​我是生活导师小强,非常高兴能够为您解答。以下是 MATLAB 中二分法的示例代码:​function [root,iter] = bisection(f,a,b,tol,maxiter)​% f: the function to be solved​% a, b: the initial interval [a,b]​% tol: the tolerance​% maxiter: the maximum number of iterations allowed​% Initialization​iter = 0;​fa = feval(f,a);​% Check if the initial interval is valid​if sign(feval(f,b)) == sign(fa) ​ error('f(a) and f(b) must have opposite signs')​end​% Loop until convergence or the maximum number of iterations is reached​while (b-a)/2 > tol && iter < maxiter ​ % Compute the midpoint and evaluate the function at the midpoint ​ c = (a + b)/2; ​ fc = feval(f,c); ​ % Update the interval [a,b] ​ if fc == 0 ​ % The root has been found ​ root = c; ​ return ​ elseif sign(fc) == sign(fa) ​ a = c; ​ fa = fc; ​ else ​ b = c; ​ end ​ % Update the iteration counter ​ iter = iter + 1;​end​% Output the root and the number of iterations​root = (a + b)/2;​end​【回答】这是一个函数,需要传递四个参数:​- 待解的函数 f​- 初始区间 [a, b]​- 容忍误差 tol​- 最大迭代次数 maxiter​函数将返回求解的根以及迭代次数。​使用该函数的示例代码如下:​f = @(x) x^3 - 2*x - 5; ​a = 2; ​b = 3; ​tol = 1e-6; ​maxiter = 100; ​[root,iter] = bisection(f,a,b,tol,maxiter); ​fprintf('The root is %.6f, found in %d iterations\n',root,iter);​在这个例子中,我们使用二分法求解函数 f(x) = x^3 - 2x - 5 在区间 [2,3] 中的根,容忍误差为 1e-6,最大迭代次数为 100。函数返回的结果是根的近似值和求解过程中迭代的次数。【回答】

matlab二分法代码

function [x, fx, k] = bisection(f, a, b, max_iter, tol)% 初值检查if f(a)*f(b)>=0 error('区间两端函数值应异号:f(%g)=%g,f(%g)=%g。', a, f(a), b, f(b));end% 设定初始迭代值x = (a+b)/2;fx = f(x);k = 0;% 二分迭代while ktol k = k+1; if f(a)*fx<0 b = x; else a = x; end x = (a+b)/2; fx = f(x);end% 输出结果if k<max_iter fprintf('迭代收敛于 %g,函数值 f(x)=%g。\n', x, fx);else fprintf('达到最大迭代次数 %g,未达到允许误差范围 %g。\n', max_iter, tol);end【摘要】matlab二分法代码【提问】function [x, fx, k] = bisection(f, a, b, max_iter, tol)​% 初值检查​if f(a)*f(b)>=0 ​ error('区间两端函数值应异号:f(%g)=%g,f(%g)=%g。', a, f(a), b, f(b));​end​% 设定初始迭代值​x = (a+b)/2;​fx = f(x);​k = 0;​% 二分迭代​while ktol​ k = k+1;​ if f(a)*fx<0​ b = x;​ else​ a = x;​ end​ x = (a+b)/2;​ fx = f(x);​end​% 输出结果​if k<max_iter​ fprintf('迭代收敛于 %g,函数值 f(x)=%g。\n', x, fx);​else​ fprintf('达到最大迭代次数 %g,未收敛。\n', max_iter);​end​【回答】【提问】【提问】fprintf('迭代收敛于 %g,函数值 f(x)=%g。', x, fx);​else ​ fprintf('达到最大迭代次数 %d 仍未收敛。', max_iter);​end​end​使用示例:​% 定义目标函数​f = @(x) x.^2-2;​% 二分求解​a = 0;​b = 2;​max_iter = 100;​tol = 1e-6;​[x, fx, k] = bisection(f, a, b, max_iter, tol);​该代码使用了 MATLAB 的函数句柄和格式化输出,相对简洁易懂。在实际使用时需要根据具体问题进行修改和调整。【回答】【提问】这个题的二分法代码【提问】利用二分法不断缩小根所在的区间,以满足误差要求。具体步骤如下:𔁯. 初始化区间左右端点x1=10,x2=1。𔁰. 在区间中间点x0=(x1+x2)/2处,求出方程的函数值f(x0)=x0*e-1。𔁱. 判断f(x0)是否等于0或者区间长度是否小于所需误差,如果满足条件则停止计算,输出结果x0作为方程的根。𔁲. 如果f(x0)的符号与f(x1)相同,则说明根在区间[x0,x2]内,更新x2=x0,否则更新x1=x0。𔁳. 重复步骤2到4,直到满足条件停止计算。​代码示例:​#include ​#include ​int main() {​ double e = 1.0;​ double x1 = 10.0, x2 = 1.0, x0, err;​ double fx1, fx2, fx0;​ err = 10.0 * M_PI / 180.0; // 转化为弧度​ do {​ x0 = (x1 + x2) / 2;​ fx0 = x0 * e - 1;​ fx1 = f(x1);​ fx2 = f(x2);​ if (fx0 == 0 || fabs(x2 - x1) < err) {​ printf("Root: %f\n", x0);​ break;​ }​ if (fx0 * fx1 < 0) { // 根在[x1, x0]内​ x2 = x0;​ } else { // 根在[x0, x2]内​ x1 = x0;​ }​ } while (1); // 持续循环直到满足条件​ return 0;​【回答】#include ​#include ​double f(double x){​ return x*x*x - 3*x*x + 1;​double newton(double x0, double err){​ double x1, x2, fx1, fx2, fx0;​ x1 = x0 - f(x0)/f'(x0);​ fx1 = x1 * exp(-1) - f(x1);​ do{​ x2 = x1;​ fx2 = fx1;​ x1 = x2 - f(x2)/f'(x2);​ fx1 = x1 * exp(-1) - f(x1);​ }while(fabs(fx1) > err);​ fx0 = x0 * exp(-1) - f(x0);​ if(fx1 * fx0 < 0){​ x0 = x2;​ }else{​ x0 = x1;​ }​ return x0;​int main(){​ double x0 = 1.8;​ printf("x = %lf\n", newton(x0, 1e-6));​ return 0;​【回答】

Matlab编写程序用二分法求解非线性方程的根

用二分法求方程x*x-x-1=0的正根,要求精确到小数点后四位。(matlab)
l1 计算公式
f(ak)*f(bk)<0;
bk-ak=1/2k-1*(b-a);
a1<=a2<=… <=ak<=…,b1<=b2<=…<=bk<=…。
l2 算法分析
设f(x)∈C[a,b],且f(a)f(b)0,则a2=x1,b2=b1,否则a2=a1,b2=x1。得到[a2,b2]满足:f(a2)f(b2)=a1,b2<=b1。以[a2,b2]取代[a1,b1],继续以上过程,直到精度达到要求为止。
l3 源程序
function f1=fun(x);
f1=x-cos(x);
function [x,k]=erfen(a,b,s) %a,b为根区间,s为精度
a=0;b=1;s=1e-4;k=0;
while abs(a-b)>s
x=(a+b)/2;
if fun(a)*fun(x)<0
b=x;
else
a=x;
end
k=k+1;
end
x=(a+b)/2 %x为方程的解
k % k为计算次数
实验结果讨论和分析
本题使用二分法得到的x=0.7391,满足基本要求,题目要求精确到小数点后四位,告诉了本题二分法得应达到得精确度;计算次数为14,二分法收敛性很好,收敛速度不快。


上一篇:公共基础知识视频

下一篇:没有了