分式是代数式吗
分式是代数式。用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。单个的数或字母也是代数式。也可以说:由数和表示数的字母经有限次加、减、乘、除、乘方和乘方等代数运算所得的式子。 一、有理式 有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。 整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。 二、无理式 我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。
分式是代数式吗
用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。单个的数或字母也是代数式。也可以说:由数和表示数的字母经有限次加、减、乘、除、乘方和乘方等代数运算所得的式子。所以分式是代数式。 代数式中的有理式 有理式,包括分式和整式。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算,它也可以化为两个多项式的商。例如2x+2y等都是有理式。含有关于字母开方运算的代数式称为无理式。 对于分式,我们规定,分子可以是一个确定的数,也可以是一个式子,但分母却必须是一个含有字母的式子,而不能是一个确定的数。从形式上看,凡是分母中含有字母的有理式叫做有理分式,简称分式,相对于分式,把分母中不含有字母或不包含除法运算的有理式叫做有理整式,简称整式。
分式的定义
分式的定义是:例如(A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。当分式中分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式中分子的次数高于分母的次数时,我们把这个分式叫做假分式。
分式条件
1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。公因式的提取方法是用系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
分式的基本概念
分式的基本概念如下:①分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变。即整式A除以整式B,可以表示成A/B的形式(B≠0)。如果除式B中含有字母,那么称为分式(fraction)。