数列知识点

时间:2025-01-27 22:36:33编辑:阿奇

高二年级数学必修五知识点总结

1.高二年级数学必修五知识点总结   基本初等函数有哪些   基本初等函数包括以下几种:   (1)常数函数y=c(c为常数)   (2)幂函数y=x^a(a为常数)   (3)指数函数y=a^x(a>0,a≠1)   (4)对数函数y=log(a)x(a>0,a≠1,真数x>0)   (5)三角函数以及反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)   基本初等函数性质是什么   幂函数   形如y=x^a的函数,式中a为实常数。   指数函数   形如y=a^x的函数,式中a为不等于1的正常数。   对数函数   指数函数的反函数,记作y=logaax,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,logaax=x。   三角函数   即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。 2.高二年级数学必修五知识点总结   正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径   余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角   圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标   圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0   抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py   直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h   正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'   圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2   圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l   弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r   锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h   斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长   柱体体积公式V=s*h圆柱体V=p*r2h   乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)   三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b |a-b|≥|a|-|b|-|a|≤a≤|a|   一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a   根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理   判别式:   b2-4ac=0注:方程有两个相等的实根   b2-4ac>0注:方程有两个不等的实根   b2-4ac<0注:方程没有实根,有共轭复数根 3.高二年级数学必修五知识点总结   一、变量间的相关关系   1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.   2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.   二、两个变量的线性相关   从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.   当r>0时,表明两个变量正相关;   当r<0时,表明两个变量负相关.   r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.   三、解题方法   1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.   2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.   3.由相关系数r判断时|r|越趋近于1相关性越强. 4.高二年级数学必修五知识点总结   1.数列定义:   如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。   等差数列的通项公式为:an=a1+(n-1)d(1)   前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)   以上n均属于正整数。   2.解释说明:   从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。   在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。   且任意两项am,an的关系为:an=am+(n-m)d   它可以看作等差数列广义的通项公式。   3.公式:   从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}   若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。   4.基本公式:   和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项   末项=2和÷项数-首项   末项=首项+(项数-1)×公差 5.高二年级数学必修五知识点总结   空间直线与直线之间的位置关系   (1)异面直线定义:不同在任何一个平面内的两条直线   (2)异面直线性质:既不平行,又不相交.   (3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线   异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.   (4)求异面直线所成角步骤:   A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.   B、证明作出的角即为所求角   C、利用三角形来求角   (5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.   (6)空间直线与平面之间的位置关系   直线在平面内——有无数个公共点.   三种位置关系的符号表示:aαa∩α=Aaα   (7)平面与平面之间的位置关系:   平行——没有公共点;αβ   相交——有一条公共直线.α∩β=b

高二数学必修五知识点总结

1.高二数学必修五知识点总结   分层抽样   两种方法:   1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。   2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。   2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。   分层标准:   (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。   (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。   (3)以那些有明显分层区分的变量作为分层变量。   3.分层的比例问题:   (1)按比例分层抽样:   根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。   (2)不按比例分层抽样:   有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 2.高二数学必修五知识点总结   (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;   (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;   (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;   (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;   (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。   (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 3.高二数学必修五知识点总结   1.求值中主要有三类求值问题:   (1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.   (2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.   (3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.   2.三角恒等变换的常用方法、技巧和原则:   (1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.   (2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.   (3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.   消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异. 4.高二数学必修五知识点总结   任意角三角函数   在任意角三角形中,各边角有以下的函数关系:   正弦定理在任意角三角形中,各个角的正弦与它所对的边的比相等,并且等于外接圆的直径。   余弦定理在任意角三角形中,任意一边的平方等于其余两边的平方和减去这两边的乘积的两倍与它们的夹角的余弦的积。   在直角坐标系中,⊙O的半径为1,任意角α的三角函数定义如下:   正弦:∠α与单位圆的交点A的纵坐标与圆半径的比值叫做正弦,表示为:sinα=Ay/OA=Ay;其中Ay叫做正弦线。   余弦:∠α与单位圆的交点A的横坐标与圆半径的比值叫做余弦,表示为:cosα=Ax/OA=Ax;其中Ax叫做余弦线。   正切:∠α与单位圆的交点A的纵坐标与横坐标的比值叫做正切,表示为:tanα=Ay/Ax;   余切:∠α与单位圆的交点A的横坐标与纵坐标的比值叫做余切,表示为:cotα=Ax/Ay;;   正割:圆半径和∠α与单位圆的交点A的横坐标的比值叫做正割,表示为:secα=OA/Ax=1/Ax;   余割:圆半径和∠α与单位圆的交点A的纵坐标的比值叫做余割,表示为:cscα=OA/Ay=1/Ay; 5.高二数学必修五知识点总结   公式一:设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)=sinαk∈z   cos(2kπ+α)=cosαk∈z   tan(kπ+α)=tanαk∈z   cot(2kπ+α)=cotαk∈z   公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)=—sinα   cos(π+α)=-cosα   tan(π+α)=tanα   cot(π+α)=cotα   公式三:任意角α与-α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   公式六:π/2±α与α的三角函数值之间的关系:   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   推算公式:3π/2±α与α的三角函数值之间的关系:   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα

上一篇:空调不制冷什么原因 怎么解决

下一篇:没有了