高数~微分中值定理证明题!在线等哟
微分中值定理是一系列中值定理总称.有:费马中值定理,罗尔定理,泰勒公式,拉格朗日中值定理,洛必达法则,柯西中值定理,达布定理.可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广.
费马中值定理内容:设函数f(x)在ξ处取得极值,且f(x)在点ξ处可导,则f'(ξ)=0.推论:若函数f(x)在区间I上的最大值(最小值)在I内的点c处达到,且f(x)在点c处可导,则f'(c)=0.
罗尔定理内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(aN时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x).
柯西中值定理内容:
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ) 成立.
达布定理内容:若函数f(x)在[a,b]上可导,则f′(x)在[a,b]上可取f′(a)和f′(b)之间任何值.推广:若f(x),g(x)均在[a,b]上可导,并且在[a,b]上,g′(x)≠0,则f′(x)/g′(x)可以取f′(a)/g′(a)与f′(b)/g′(b)之间任何值.
中值定理的证明
(1)证:假设对于任意x∈[0,1],f(x)﹤0,
那么f(x)/x﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
假设对于任意x∈[0,1],f(x)﹥0,
那么f(x)/(x-1)﹤0,由保号性知lim(x→0)f(x)/x﹤0,矛盾,
∴存在ζ1,ζ2∈(0,1)使f(ζ1)﹥0,f(ζ2)﹤0,
又∵f(x)在ζ1与ζ2之间连续,
∴由零点定理知存在ζ在ζ1与ζ2之间使f(ζ)=0,
∴存在ζ∈(0,1)使f(ζ)=0。
(2)证:f(0)=f(1)=0,f′(0)=1,f′(1)=2,
设g(x)=f(x)/e^x,∴g(x)在[0,1]上可导,g(0)=g(1)=0,
∴由罗尔中值定理知存在η1∈(0,1)使g′(η1)=0,
即(f′(η1)·e^η1-f(η1)·e^η1)/e^(2η1)=0,
∴f′(η1)·e^η1-f(η1)·e^η1=0,
设h(x)=f′(x)·e^x-f(x)·e^x,
∴h(0)=1,h(η1)=0,h(1)=2e,h(x)在[0,1]上连续,
∴存在η2∈(η1,1)使h(η2)=1,∴h(0)=h(η2),
又∵h(x)在[0,η2]上可导,
∴由罗尔中值定理知存在η∈(0,η2)使h′(η)=0,
即f″(η)·e^η+f′(η)·e^η-f′(η)·e^η-f(η)·e^η=0,
∴f″(η)·e^η-f(η)·e^η=0,∴f″(η)=f(η),
∴存在η∈(0,1)使f″(η)=f(η)。